

Support Worksheet – Topic 6, Worksheet 3

1	a	Explain why the wave theory of light cannot explain why electrons are emitted essentially without time delay in the photoelectric effect.	[2]
	b	Explain how the photon theory explains the essentially instantaneous electron emission.	[2]
2	a	Explain why the wave theory of light cannot explain why the kinetic energy of the photoelectrons increases with increasing light frequency.	[2]
	b	Explain how the photon theory explains the observation in a .	[2]
3	State and explain the effect of increasing light intensity on		
	a	the energy of the photoelectrons.	[2]
	b	the number of the photoelectrons.	[2]
4	State	what is meant by the work function of a surface.	[1]
5	Light funct	t of wavelength 4.4×10^{-7} m is incident on a metallic surface whose work ion is 2.2 eV. Calculate the speed of the emitted electrons.	[3]
6	a	State what is meant by the stopping voltage.	[1]
	b	In a photoelectric effect experiment the stopping voltage is plotted versus the incident light frequency. State what the slope of the straight line obtained in the graph represents.	[1]
7	a	State what is meant by the de Broglie hypothesis.	[2]
	b	Describe an experiment to verify the de Broglie hypothesis.	[3]
8	Calcu by a j	alate the de Broglie wavelength of an electron that has been accelerated from rest potential difference of 150 V.	[2]
9	a	An electron is confined to move on a straight line of length <i>L</i> . State the allowed de Broglie wavelengths for this electron.	[1]
	b	Using your answer to a deduce that the kinetic energy of the electron is given $\frac{2}{2}$	
		by $E_K = \frac{n h^2}{8mL^2}$.	[2]
10	a	State the Heisenberg uncertainty principle for position and momentum.	[1]
	b	Determine the uncertainty in the momentum of an electron that is confined within an atom of diameter 10^{-10} m.	[2]